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Abstract— We study the design of feedback gains that strike
a balance between the H2 performance of distributed systems
and the sparsity of controller. Our approach consists of two
steps. First, we identify sparsity patterns of feedback gains
by incorporating sparsity-promoting penalty functions into the
H2 problem, where the added terms penalize the number
of communication links in the distributed controller. Second,
we optimize feedback gains subject to structural constraints
determined by the identified sparsity patterns. In the first
step, we identify sparsity structure of feedback gains using
the alternating direction method of multipliers, which is a
powerful algorithm well-suited to large optimization problems.
This method alternates between optimizing the sparsity and
optimizing the closed-loop H2 norm, which allows us to exploit
the structure of the corresponding objective functions. In
particular, we take advantage of the separability of sparsity-
promoting penalty functions to decompose the minimization
problem into sub-problems that can be solved analytically.
An example is provided to illustrate the effectiveness of the
developed approach.

Index Terms— Alternating direction method of multipli-
ers, cardinality minimization, communication architectures,
distributed systems, homotopy, `1 minimization, sum-of-logs
penalty, sparsity-promoting optimal control.

I. INTRODUCTION

The design of distributed controllers for interconnected
systems has received considerable attention in recent
years [1]–[12]. Research efforts have focused on two major
issues, namely, the design of communication architectures of
distributed controllers and the design of optimal controllers
under a priori specified structural constraints.

In this paper, we develop methods for the design of sparse
optimal H2 feedback gains. Our approach consists of two
steps. The first step, which can be viewed as a structure
identification step, is aimed at finding sparsity patterns S
that strike a balance between the H2 performance and the
sparsity of controller. This is achieved by incorporating
sparsity-promoting penalty functions into the optimal control
problem, where the added sparsity-promoting terms penalize
the number of communication links. Second, we solve an op-
timal control problem subject to the feedback gain belonging
to the identified structure S. This polishing step improves the
H2 performance of structured controllers.

The main contributions of our paper can be summarized
as follows. First, we solve the sparsity-promoting optimal
control problem for general linear time-invariant systems. As
a consequence, our approach accommodates homogeneous or
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heterogenous subsystems with coupled or decoupled dynam-
ics in networks that have directed or undirected communica-
tion links.

Second, we demonstrate that the alternating direction
method of multipliers (ADMM) [13] provides an effective
tool for the design of optimal distributed controllers. This
method alternates between optimizing the sparsity of the
feedback matrix and optimizing the closed-loop H2 norm.
The advantage of this alternating mechanism is threefold.
• It provides a flexible framework for incorporation of

different penalty functions to promote sparsity.
• It allows us to exploit the separability of the sparsity-

promoting penalty functions and to decompose the
corresponding optimization problems into sub-problems
that can be solved analytically.

• It facilitates the use of descent algorithms for the
H2 optimization, in which a descent direction can be
formed by solving two Lyapunov equations and one
Sylvester equation.

Finally, we use several sparsity-promoting penalty func-
tions including weighted `1 norm, nonconvex sum-of-logs,
and cardinality functions; these have advantageous sparsity-
promoting properties compared to the widely used `1
norm [14]. For all these penalty functions, analytical expres-
sions for solution of the corresponding optimization problem
in ADMM can be obtained. Furthermore, these analytical
results are independent of the H2 norm objective. Therefore,
they can be utilized in ADMM to design sparse feedback
gains that are optimal with respect to other control objectives.

Our approach is motivated in part by the emerging field
of compressive sensing. In controls community, recent work
inspired by similar ideas includes [15], [16]. In [16], a
cardinality induced gain was introduced to quantify the
sparsity of the impulse response of a discrete-time system.
In [15], the weighted `1 framework was used to design
structured dynamic output feedback controllers subject to a
given H∞ performance.

Our presentation is organized as follows. We formulate
the sparsity-promoting optimal control problem and compare
several sparsity-promoting penalty functions in Section II.
We present the ADMM algorithm, emphasize the separability
of penalty functions, and provide analytical solutions to the
sub-problems of ADMM in Section III. We demonstrate the
effectiveness of the developed approach using a mass-spring
system example in Section IV. We conclude the paper with
a summary of our contributions in Section V.
II. SPARSITY-PROMOTING OPTIMAL CONTROL PROBLEM

Consider the following control problem

ψ̇ = Aψ + B1 d + B2 u
z = C ψ + Du
u = −F ψ,



where d is the exogenous input signal, z is the performance
output, C =

[
Q1/2 0

]T
, and D =

[
0 R1/2

]T
. The matrix

F is a state feedback gain, Q = QT ≥ 0 and R = RT >
0 are the state and control performance weights, and the
closed-loop system is given by

ψ̇ = (A − B2F )ψ + B1 d

z =

[
Q1/2

−R1/2F

]
ψ.

(1)

The design of the optimal state feedback gain F , subject to
structural constraints that dictate its zero entries, was recently
considered by the authors in [9], [12]. Let the subspace S
embody these constraints and let us assume that there exists
a stabilizing F ∈ S. References [9], [12] search for F ∈ S
that minimizes the H2 norm of the transfer function from d
to z. Since for stabilizing F , the closed-loop H2 norm

J(F ) = trace
(
BT1

∫ ∞
0

e(A−B2F )T t(Q+ FTRF )× (2)

e(A−B2F )t dtB1

)
can be obtained from the solution of the Lyapunov equation

(A−B2F )TP + P (A−B2F ) = −
(
Q+ FTRF

)
,

the H2 problem subject to structural constraint on the feed-
back matrix F can be formulated as

minimize J(F ) = trace
(
BT1 P (F )B1

)
subject to F ∈ S.

(SH2)

In the absence of the constraint F ∈ S , problem (SH2)
simplifies to the standard LQR problem.

Note that the communication architecture of the controller
is a priori specified in (SH2). In contrast, in this paper
our emphasis shifts to identifying favorable communication
structures without any prior assumptions on the sparsity
patterns of matrix F . We propose an optimization framework
in which the sparsity of feedback gain is directly incorporated
into the objective function.

Consider the following optimization problem

minimize J(F ) + γ g0(F ), (3)

where
g0(F ) = card (F ) (4)

denotes the cardinality function, i.e., the number of nonzero
elements of a matrix. Note that, in contrast to problem (SH2),
no structural constraint is imposed on F ; instead, our goal
is to promote sparsity of the feedback gain by incorporat-
ing cardinality function into the optimization problem. The
positive scalar γ characterizes our emphasis on the sparsity
of F ; a larger γ encourages a sparser F , while γ = 0
renders a centralized gain that is the solution of the standard
LQR problem. For γ = 0, the solution to (3) is given by
Fc = R−1BT2 P , where P is the unique positive definite
solution of the algebraic Riccati equation

ATP + PA + Q − PB2R
−1BT2 P = 0. (5)

A. Sparsity-promoting penalty functions
Problem (3) is a combinatorial optimization problem

whose solution usually requires an intractable combinatorial
search. In optimization problems where sparsity is desired,

cardinality function is typically replaced by the `1 norm of
the optimization variable [17, Chapter 6],

g1(F ) = ‖F‖`1 =
∑
i,j

|Fij |. (6)

Recently, a weighted `1 norm was used to enhance sparsity
in signal recovery [14],

g2(F ) =
∑
i,j

Wij |Fij |, (7)

where Wij ∈ R are positive weights. Weighted `1 norm tries
to bridge the difference between `1 norm and cardinality
function. In contrast to cardinality function that assigns the
same cost to any nonzero element, `1 norm penalizes more
heavily elements of larger magnitudes. The positive weights
can be chosen to counteract this magnitude dependence of
`1 norm. For example, if Wij is chosen to be inversely
proportional to the magnitude of Fij ,{

Wij = 1/|Fij |, Fij 6= 0,

Wij =∞, Fij = 0,

then weighted `1 norm and cardinality function of F coin-
cide, ∑

i,j

Wij |Fij | = card (F ) .

The above scheme for weights, however, cannot be im-
plemented, since weights depend on the unknown feedback
gain. A reweighted algorithm that solves a sequence of
weighted `1 optimization problems in which the weights
are determined by the solution of weighted `1 problem in
the previous iteration was proposed in [14]. This reweighted
scheme was recently employed by the authors to design
sparse feedback gains for a class of distributed systems [18].

Both `1 norm and its weighted version are convex relax-
ations of cardinality function. We also consider nonconvex
alternatives that could be more aggressive in promoting
sparsity. Suppose that we wish to find the sparsest feedback
gain that provides a given level of H2 performance σ > 0,

minimize card (F )

subject to J(F ) ≤ σ.

Approximating card (F ) with a penalty function yields

minimize g(F )

subject to J(F ) ≤ σ.
(8)

Solution to (8) is the intersection of the constraint set C =
{F | J(F ) ≤ σ} and the smallest sub-level set of g that
touches C; see Fig. 1. In contrast to `1 norm whose sub-
level sets are determined by the convex `1 ball, the sub-
level sets of the nonconvex function (e.g., `p norm with
0 < p < 1) have a star-like shape; see Fig. 1d. The sum-
of-logs function is another example of nonconvex functions
with similar geometry of sub-level sets,

g3(F ) =
∑
i,j

log

(
1 +

|Fij |
ε

)
, 0 < ε � 1. (9)



(a) (b) (c) (d)

Fig. 1: Solution F ? of the constrained problem (8) is the
intersection of constraint set C = {F | J(F ) ≤ σ} and
the smallest sub-level set of g that touches C. The penalty
function g is (a) `2 norm (i.e., Frobenius norm), (b) `1
norm, (c) weighted `1 norm with appropriate weights, and
(d) nonconvex function such as `p norm with 0 < p < 1 or
the sum-of-logs function (9).

B. Sparsity-promoting optimal control problem

Our approach to sparse feedback synthesis makes use of
the above discussed penalty functions. In order to obtain
sparse state feedback gains that yield satisfactory H2 perfor-
mance, we consider the following optimal control problem

minimize J(F ) + γ g(F ) (SP)

where J is the closed-loop H2 norm (2) and g is a sparsity-
promoting penalty function, e.g., given by (4), (6), (7), or
(9). When cardinality function (4) is replaced by (6), (7),
or (9), problem (SP) can be viewed as a relaxation of the
combinatorial problem (3)-(4), obtained by approximating
cardinality function with the corresponding penalty function.

As parameter γ varies over [0,+∞), the solution of (SP)
traces the optimal trade-off path between H2 performance J
and feedback gain sparsity g. When γ = 0, the solution is
the centralized feedback gain, which can be computed from
the solution of the algebraic Riccati equation (5). We then
slightly increase γ and employ an iterative algorithm – the
alternating direction method of multipliers – initialized by
the optimal feedback matrix at the previous γ. The solution
of (SP) becomes sparser as γ increases. After a desired
level of sparsity is achieved, we fix the sparsity structure
and find the optimal structured feedback gain by solving the
structured H2 problem (SH2).

Remark 1: We employ Newton’s method in conjunction
with conjugate gradient scheme to solve the structured H2

problem (SH2). Due to space limitation, however, we refer
the reader to [19] for a detailed discussion of this approach.

III. IDENTIFICATION OF SPARSITY-PATTERNS VIA THE
ALTERNATING DIRECTION METHOD OF MULTIPLIERS

The alternating direction method of multipliers has been
studied extensively since the 1970s. This simple but powerful
algorithm blends the separability of the dual decomposition
with the superior convergence of the method of multipliers.
Reference [13] provides an excellent survey of ADMM
with emphasis on its application to large-scale distributed
optimization problems. ADMM has been used in a wide
range of applications including sparse signal recovery, image
restoration and denoising, and sparse inverse covariance
selection; see [13] and the references therein.

Consider the following constrained optimization problem

minimize J(F ) + γ g(G)

subject to F − G = 0,
(10)

which is clearly equivalent to (SP). The augmented La-
grangian [20] associated with the constrained problem (10)
is given by

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F − G)

)
+

ρ

2
‖F − G‖2F ,

where Λ is the dual variable (i.e., the Lagrange multiplier), ρ
is a positive scalar, and ‖·‖F is the Frobenius norm. It might
appear that we have complicated the problem by introducing
an additional variable G and an additional constraint F−G =
0. By doing this, however, we have in effect simplified (SP)
by decoupling the objective function into two parts that
depend on two different variables. As discussed below, this
allows us to exploit structures of J and g.

In order to find a minimizer of the constrained prob-
lem (10), the ADMM algorithm uses a sequence of iterations

F k+1 := arg min
F

Lρ(F,Gk,Λk) (11a)

Gk+1 := arg min
G

Lρ(F k+1, G,Λk) (11b)

Λk+1 := Λk + ρ(F k+1 − Gk+1), (11c)

until

‖F k+1 − Gk+1‖F ≤ ε and ‖Gk+1 − Gk‖F ≤ ε.

In contrast to the method of multipliers [20], in which F and
G are minimized jointly

(F k+1, Gk+1) := arg min
F,G

Lρ(F,G,Λk),

ADMM consists of an F -minimization step (11a), a
G-minimization step (11b), and a dual variable update
step (11c). Thus, the optimal F and G are determined in
an alternating fashion, which motivates the name alternating
direction. Note that the dual variable update (11c) uses a
step-size equal to ρ, which guarantees the dual feasibility of
(Gk+1,Λk+1) in each ADMM iteration [13].

ADMM brings two major benefits to the sparsity-
promoting optimal control problem (SP):
• Separability of g. The penalty function g is separable

with respect to individual elements of a matrix. In
contrast, the closed-loop H2 norm cannot be decom-
posed into componentwise functions of the feedback
gain. By separating g and J in the minimization of
the augmented Lagrangian Lρ, we can decompose G-
minimization problem (11b) into sub-problems that only
involve scalar variables. This allows us to determine
analytically the solution of (11b) for different penalty
functions including weighted `1 norm, nonconvex sum-
of-logs function, and even cardinality function.

• Differentiability of J . The closed-loop H2 norm J is a
differentiable function of the feedback gain matrix [12];
this is in contrast to g which is non-differentiable.
By separating g and J in the minimization of the
augmented Lagrangian Lρ, we can utilize descent al-



gorithms that rely on the differentiability of J to solve
F -minimization problem (11a). To find the minimizer
of (11a), we employ one such algorithm that alter-
nates between solving two Lyapunov equations and a
Sylvester equation.

In Section III-A, we derive analytical expressions for
solutions of G-minimization problem (11b). In Section III-
B, we describe the Anderson-Moore method to solve F -
minimization problem (11a).
A. Separable solution to the G-minimization problem (11b)

Completion of squares with respect to G in the augmented
Lagrangian Lρ can be used to show that G-minimization
problem (11b) is equivalent to

minimize φ(G) = γ g(G) + (ρ/2)‖G − V k‖2F , (12)

where
V k = (1/ρ)Λk + F k+1.

To simplify notation, we drop the superscript in V k through-
out this section. Since both g and the square of Frobenius
norm can be written as a summation of componentwise
functions of a matrix, we can decompose (12) into sub-
problems expressed in terms of individual elements of G.
For example, if g is `1 norm, then

φ(G) =
∑
i,j

(
γ|Gij |+ (ρ/2)(Gij − Vij)2

)
.

This facilitates the conversion of (12) to minimization prob-
lems that only involve scalar variables. By doing so, we
can determine analytically the solution of (12) for different
penalty functions including weighted `1 norm, sum-of-logs
function, and cardinality function.

1) Weighted `1 norm: In this case, the objective function
in (12) is a summation of strictly convex functions

φ(G) =
∑
i,j

(
γWij |Gij | + (ρ/2)(Gij − Vij)

2
)
.

Therefore, problem (12) is decomposed into sub-problems,

minimize φij(Gij) = γWij |Gij | + (ρ/2)(Gij − Vij)
2

whose unique solution is given by the shrinkage opera-
tor (e.g., see [13, Section 4.4.3])

G?ij =

 Vij − a, Vij ∈ (a, +∞)
0, Vij ∈ [−a, a]
Vij + a, Vij ∈ (−∞, −a),

(13)

where a = (γ/ρ)Wij ; see Fig. 2a. For given Vij , G?ij
is obtained by moving Vij towards zero with the amount
(γ/ρ)Wij ; in particular, G?ij is set to zero if |Vij | ≤
(γ/ρ)Wij . Therefore, a more aggressive scheme for driving
G?ij to zero can be obtained by increasing γ and Wij and by
decreasing ρ.

2) Cardinality function: In this case, problem (12) is
decomposed into sub-problems,

minimize φij(Gij) = γ card (Gij) + (ρ/2)(Gij − Vij)
2

whose unique solution is given by the truncation opera-
tor [19]

G?ij =

{
0, |Vij | ≤ b
Vij , |Vij | > b,

(14)

(a) (b)

Fig. 2: (a) Shrinkage operator (13) with a = (γ/ρ)Wij ; (b)
truncation operator (14) with b =

√
2γ/ρ. The slope of lines

in both (a) and (b) is equal to one.

(a) γ = 0.1 (b) γ = 1 (c) γ = 10

Fig. 3: Characteristics of operator (15) with {ρ = 100, ε =
0.1} for different γ values. For γ = 0.1, (15) resembles
the shrinkage operator (13) in Fig. 2a; for γ = 10, (15)
resembles the truncation operator (14) in Fig. 2b; for γ = 1,
(15) bridges the difference between (13) and (14).

where b =
√

2γ/ρ; see Fig. 2b. For given Vij , G?ij is set to
Vij if |Vij | >

√
2γ/ρ and to zero if |Vij | ≤

√
2γ/ρ.

3) Sum-of-logs function: In this case, problem (12) is
decomposed into sub-problems,

minimize φij(Gij) = γ log

(
1 +
|Gij |
ε

)
+
ρ

2
(Gij − Vij)2

whose solution is given by

G?ij =


G+
p , Vij ∈ (c,+∞)

G0
p, Vij ∈ [0, c]

G0
m, Vij ∈ [−c, 0)

G−m, Vij ∈ (−∞,−c),

(15)

where c = (γ/ρ)ε−1 and

G0
p := arg min {φij(G+

p ), φij(G
−
p ), φij(0)}

G0
m := arg min {φij(G+

m), φij(G
−
m), φij(0)}.

Since we need to compare the value of φij at three points
{G+

p , G−p , 0} for Vij ∈ [0, c] and at another three points
{G+

m, G−m, 0} for Vij ∈ [−c, 0) to determine the solution
G?ij , operator (15) is more complex than shrinkage and
truncation operators. Here,

G±p =
1

2

(
Vij − ε ±

√
(Vij + ε)2 − 4(γ/ρ)

)
G±m =

1

2

(
Vij + ε ±

√
(Vij − ε)2 − 4(γ/ρ)

)
are solutions of quadratic equations; see [19].

For fixed ρ and ε, operator (15) is determined by the value
of γ; see Fig. 3. For small γ values, operator (15) resembles
the shrinkage operator (cf. Fig. 3a and Fig. 2a) and for large



Fig. 4: A comparison between shrinkage operator (13) shown
in blue, truncation operator (14) shown in black, and oper-
ator (15) shown in red, for {γ = 1, ρ = 100, Wij = 5,
ε = 0.1}. These operators (13), (14), and (15) correspond
to weighted `1 norm, cardinality function, and sum-of-logs
function, respectively.

γ values, it resembles the truncation operator (cf. Fig. 3c
and Fig. 2b). In other words, operator (15) can be viewed
as an intermediate step between shrinkage and truncation
operators. For example, for {γ = 1, ρ = 100, Wij = 5,
ε = 0.1}, operator (15) has a bigger (resp. smaller) dead-
zone interval compared to the shrinkage (resp. truncation)
operator; see Fig. 4.
B. Anderson-Moore method for the F -minimization prob-
lem (11a)

We next employ the Anderson-Moore method to solve
the F -minimization problem (11a). The advantage of this
algorithm lies in its fast convergence (compared to the gra-
dient method) and in its simple implementation (compared
to Newton’s method); e.g., see [21]. When applied to the F -
minimization problem (11a), this method requires solutions
of two Lyapunov equations and one Sylvester equation in
each iteration.

By completing squares with respect to F in the augmented
Lagrangian Lρ, we obtain the following equivalent problem

minimize ϕ(F ) = J(F ) + (ρ/2)‖F − Uk‖2F ,

where
Uk = Gk − (1/ρ)Λk.

Using standard techniques [12], [21], we obtain the necessary
conditions for optimality

(A−B2F )L + L(A−B2F )T = −B1B
T
1 (16a)

(A−B2F )TP + P (A−B2F ) = − (Q+ FTRF ) (16b)

∇ϕ(F ) = 2RFL + ρF − 2BT2 PL − ρUk = 0. (16c)

Starting with a stabilizing feedback F , the Anderson-Moore
method solves the Lyapunov equations (16a) and (16b),
and then solves the Sylvester equation (16c) to obtain a
new feedback gain F̄ . In other words, it alternates between
solving (16a) and (16b) for L and P with F being fixed
and solving (16c) for F with L and P being fixed. It can
be shown that [19] the difference between two consecutive
steps F̃ = F̄ − F forms a descent direction of ϕ(F ). As a
consequence, standard step-size rules (e.g., Armijo rule [20,
Section 1.2]) can be employed to determine s in F + sF̃ to
guarantee the convergence to a stationary point of ϕ. Since ϕ
is locally convex for sufficiently large ρ [19], the stationary
point provides a local minimum of ϕ.

Fig. 5: Mass-spring system.

γ 0.04 0.27 1.00

card (F ?)/card (Fc) 9.60% 3.92% 1.92%

(J(F ?) − J(Fc))/J(Fc) 0.73% 4.14% 7.97%

TABLE I: Sparsity vs. performance for mass-spring system.
Using only about 2% of nonzero elements, H2 performance
of F ? is only about 8% worse than performance of the
centralized gain Fc.

IV. MASS-SPRING SYSTEM EXAMPLE

We illustrate the utility of the developed approach using
a mass-spring system example. Additional examples along
with MATLAB source codes can be found at

www.ece.umn.edu/∼mihailo/software/lqrsp/

Consider a mass-spring system with N masses shown
in Fig. 5. Let pi be the displacement of the ith mass
from its reference position and let the state variables be
ψ1 := [ p1 · · · pN ] and ψ2 := [ ṗ1 · · · ṗN ]. For simplicity
we consider unit masses and spring constant; note that our
method can be used to design controllers for arbitrary values
of these parameters. The state-space representation is then
given by (1) with

A =

[
O I
T O

]
, B1 = B2 =

[
O
I

]
,

where T is an N × N symmetric tridiagonal matrix with
−2 on its main diagonal and 1 on its first sub- and super-
diagonal, and I and O are N×N identity and zero matrices.
The state performance weight Q is the identity matrix and
the control performance weight is R = 10I .

We use cardinality function (4) to promote sparsity. As γ
increases, the number of nonzero sub- and super-diagonals of
both position F ?p and velocity F ?v gains decreases; see Fig. 6.
Eventually, both F ?p and F ?v become diagonal matrices. It
is noteworthy that diagonals of both position and velocity
feedback gains are nearly constant except for masses that
are close to the boundary; see Fig. 7.

After sparsity structures of controllers are identified by
solving (SP), we fix sparsity patterns and solve structuredH2

problem (SH2) to obtain the optimal structured controllers.
Comparing the sparsity level and the performance of these
controllers to those of the centralized controller Fc, we see
that using only a fraction of nonzero elements, the sparse
feedback gain F ? achieves H2 performance comparable to
the performance of Fc; see Fig. 8. In particular, using about
2% of nonzero elements, H2 performance of F ? is only
about 8% worse than performance of Fc; see Table I.

V. CONCLUDING REMARKS

We have designed sparse feedback gains that optimize
the H2 performance of distributed systems. The ADMM



(a) γ = 10−4 (b) γ = 0.0233

Fig. 6: Sparsity patterns of F ? = [F ?p F ?v ] ∈ R50×100 for
the mass-spring system obtained using cardinality function
to promote sparsity. As γ increases, the number of nonzero
sub- and super-diagonals of F ?p and F ?v decreases.

(a) (b)

Fig. 7: (a) The diagonal of F ?p and (b) the diagonal of F ?v
for different values of γ: 10−4 (◦), 0.1526 (+), and 1 (∗).
Diagonals of centralized position and velocity gains are very
similar to (◦) for γ = 10−4.

algorithm has been used to identify sparse communication
architectures. We have then optimized the feedback gains
subject to structural constraints imposed by the identified
communication architectures. We have demonstrated the ef-
fectiveness of the developed approach via a simple mass-
spring system example.

We have already extended our sparsity-promoting optimal
control framework to the synthesis of block sparse feedback
gains by incorporating penalty functions that promote block
sparsity [19]. Furthermore, we have developed easy-to-use
software

www.ece.umn.edu/∼mihailo/software/lqrsp/

and demonstrated its utility on several distributed control
problems. Additionally, we have employed ADMM for se-

(a) card (F ?)/card (Fc) (b) (J(F ?) − J(Fc))/J(Fc)

Fig. 8: (a) The sparsity level and (b) the performance loss
of F ? compared to the centralized gain Fc.

lection of an a priori specified number of leaders in order to
minimize the variance of stochastically forced dynamic net-
works [22]. We also aim to extend the presented framework
to the observer-based sparse optimal feedback design.
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control for a class of distributed systems,” in Proceedings of the 2011
American Control Conference, 2011, pp. 2050–2055.

[19] F. Lin, M. Fardad, and M. R. Jovanović, “Design of optimal
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